Uncovering the Superlattice Structure of Calcium Iridium Oxide at Phase Transition
© The Physical Society of Japan
This article is on
First Observation of Superlattice Reflections in the Hidden Order at 105 K of Spin-Orbit Coupled Iridium Oxide Ca5Ir3O12
(JPSJ Editors' Choice)
J. Phys. Soc. Jpn.
90,
063702
(2021)
.
First Observation of Superlattice Reflections in the Hidden Order at 105 K of Spin-Orbit Coupled Iridium Oxide Ca5Ir3O12
(JPSJ Editors' Choice)
J. Phys. Soc. Jpn.
90,
063702
(2021)
.
Share this topic
Fields
Related Articles
-
Shaping the Future of Materials Science with Tanabe–Sugano Diagrams
Dielectric, optical, and other properties in condensed matter
Electron states in condensed matter
Electronic structure and electrical properties of surfaces and nanostructures
Magnetic properties in condensed matter
2025-1-21
This special collection published in the Journal of the Physical Society of Japan celebrates 70 Years of Tanabe–Sugano Diagrams, highlighting their continued role in advancing materials with transition metals.
-
How to Construct a 3D Dirac Semimetal by Stacking 2D Massless Dirac Fermion Layers
Electron states in condensed matter
Electronic structure and electrical properties of surfaces and nanostructures
2025-1-14
Interlayer spin–orbit coupling originating from the anion potential gives rise to a 3D Dirac semimetal state that preserves inversion symmetry in the multilayer organic massless Dirac fermion system α-(ET)2I3.
-
Unlocking Secrets of Novel Charge-Orbital States in Transition-Metal Compounds
Cross-disciplinary physics and related areas of science and technology
Electron states in condensed matter
Electronic structure and electrical properties of surfaces and nanostructures
Magnetic properties in condensed matter
Structure and mechanical and thermal properties in condensed matter
2025-1-6
A new Special Topics edition of the Journal of the Physical Society of Japan features articles exploring special transition-metal compounds that exhibit novel charge-orbital states.
-
Imaging Atomic Displacement in BaTiO3 with Neutron Holography
Measurement, instrumentation, and techniques
Structure and mechanical and thermal properties in condensed matter
2024-11-7
Newly developed neutron holography was applied to ferroelectric BaTiO3 to evaluate oxygen displacement, providing important structural information for improving the ability of dielectric materials to store electricity.
-
Fermi Machine — Quantum Many-Body Solver Derived from Mapping between Noninteracting and Strongly Correlated Fermions
Electron states in condensed matter
Measurement, instrumentation, and techniques
2024-10-29
Strongly interacting quantum many-body states can be mapped to noninteracting quantum states, enabling a new quantum neural network called the Fermi machine to solve strongly correlated electron problems.