No Mass Gap Phase Transition in Novel Massless Dirac Fermion Material
© The Physical Society of Japan
This article is on
Quantum Phase Transition in Organic Massless Dirac Fermion System α-(BEDT-TTF)2I3 under Pressure
(JPSJ Editors' Choice)
J. Phys. Soc. Jpn.
89,
123702
(2020)
.
Using an organic massless Dirac fermion system, we found that massless Dirac fermions undergo a quantum phase transition without creating any mass gap even in the strong coupling regime.
Quantum Phase Transition in Organic Massless Dirac Fermion System α-(BEDT-TTF)2I3 under Pressure
(JPSJ Editors' Choice)
J. Phys. Soc. Jpn.
89,
123702
(2020)
.
Share this topic
Fields
Related Articles
-
S-Wave Spin Splitting Drives Unconventional Piezomagnetism in an Organic Altermagnet
Electron states in condensed matter
Magnetic properties in condensed matter
2025-10-21
This work provides a theoretical demonstration of piezomagnetic effects in an organic altermagnet, arising from strain-induced asymmetries in exchange interactions and orbital degrees of freedom, thereby revealing new opportunities for organic spintronics.
-
Role of Orbital Currents in Future Solid-State Devices
Electronic transport in condensed matter
2025-10-6
This review explores recent experimental advances in the emerging field of orbitronics, focusing on orbital current mechanisms and orbitronic phenomena, providing key research directions for developing energy-efficient memory devices.
-
Carrier Scattering by Antisite Defects Reverses Thermoelectric Polarity in Fe₂VAl
Electronic transport in condensed matter
Structure and mechanical and thermal properties in condensed matter
2025-10-2
Antisite defects in Fe₂VAl create resonance states that boost hole scattering, which shifts carrier dominance to electrons and reverses thermoelectric polarity, thereby offering a new path for material design.
-
A General Formula for Orbital Magnetic Susceptibility in Solids
Electron states in condensed matter
Magnetic properties in condensed matter
Statistical physics and thermodynamics
2025-9-12
This study identifies physical processes behind the simple unified formula for orbital magnetic susceptibility in solids, including contributions from four different sources, offering new insights into the understanding of the nature of Bloch electrons in magnetic field.
-
Melting of Electronic Ice Using Electric Current
Electronic transport in condensed matter
2025-9-1
Vanadium dioxide exhibits a current-induced non-equilibrium phase transition that is distinct from Joule heating, and is characterized by non-linear conduction and collective electron behavior under surprisingly small electric fields.

