How is Brownian Motion Affected by a Fluctuating Random Surface?
© The Physical Society of Japan
This article is on
Brownian Motion on a Fluctuating Random Geometry
J. Phys. Soc. Jpn.
89,
074001
(2020)
.
A researcher has developed a new theory to describe the Brownian motion of a small object that is confined in a fluctuating random surface.
Owing to the recent advances in high-precision imaging techniques, scientists can directly observe the Brownian motion of a protein molecule embedded in a biological membrane. This type of membrane typically consists of a thin lipid bilayer and can be regarded as a two-dimensional fluid sheet. Another important characteristic of a lipid membrane is its high flexibility. Thus, the membrane can exhibit large out-of-plane shape fluctuations, which can be experimentally measured [1].
What is the lateral diffusion behavior of proteins confined in such a highly fluctuating environment? Previous theories have predicted that the effective diffusion coefficient of a particle immersed in a fluctuating membrane is smaller than that in a flat membrane. On a fluctuating random membrane, a moving object needs to travel a larger distance between two points in a three-dimensional space because the trajectories are constrained on a rough surface rather than on a flat surface (Fig. 1). This is referred to as “geometrical contribution”.

Fig. 1. Image for Brownian motion of a particle confined in a fluctuating random surface.
Recently, Ohta revisited the problem of lateral diffusion on a random surface using a new theoretical approach [2]. In addition to the geometrical contribution mentioned above, Ohta reported a new “dynamical contribution”, originating from the velocity correlation of the fluctuating surface. The new dynamical contribution increases the effective diffusion coefficient, as opposed to the geometrical contribution.
What is then the overall effect on the lateral diffusion coefficient owing to these two contributions? According to the numerical estimate of the effective diffusion coefficient, its reduction compared to that of a flat surface is diminished. Nevertheless, the net reduction is still 20–30%, which should be considered for an experimental data analysis.
In recent years, numerous studies have been carried out to quantify the nonequilibrium properties of biological systems by measuring the fluctuations at different levels and scales [1]. The study by Ohta shows that the Brownian motion of a particle and surface fluctuations are coupled in a nontrivial specific manner. As the diffusion of molecules on cell membranes has a crucial role for information processing in living cells, this study is of fundamental importance for analyses of biological soft matter.
References
[1] H. Turlier, D. A. Fedosov, B. Audoly, T. Auth, N. S. Gov, C. Sykes, J.-F. Joanny, G. Gompper, and T. Betz, Nat. Phys. 12, 513 (2016).
[2] T. Ohta, J. Phys. Soc. Jpn. 89, 074001 (2020).
Brownian Motion on a Fluctuating Random Geometry
J. Phys. Soc. Jpn.
89,
074001
(2020)
.
Share this topic
Fields
Related Articles
-
Bayesian Insights into X-ray Laue Oscillations: Quantitative Surface Roughness and Noise Modeling
Measurement, instrumentation, and techniques
Structure and mechanical and thermal properties in condensed matter
2025-2-14
This study adopts Bayesian inference using the replica exchange Monte Carlo method to accurately estimate thin-film properties from X-ray Laue oscillation data, enabling quantitative analysis and appropriate noise modeling.
-
Hyperuniform and Multifractal States in Bosonic Quasicrystalline Systems
Statistical physics and thermodynamics
Structure and mechanical and thermal properties in condensed matter
2025-2-10
Quantum states can be categorized as hyperuniform or multifractal based on electronic characteristics. This study demonstrates that bosonic quasicrystalline systems exhibit hyperuniform or multifractal quantum states.
-
Spin-Spin Interaction Mediated by Rotational Lattice Vibrations
Magnetic properties in condensed matter
Structure and mechanical and thermal properties in condensed matter
2025-1-24
This study predicts the presence of spin-spin interactions mediated by the angular momentum of lattice vibrations, which can be long-range.
-
Unlocking Secrets of Novel Charge-Orbital States in Transition-Metal Compounds
Cross-disciplinary physics and related areas of science and technology
Electron states in condensed matter
Electronic structure and electrical properties of surfaces and nanostructures
Magnetic properties in condensed matter
Structure and mechanical and thermal properties in condensed matter
2025-1-6
A new Special Topics edition of the Journal of the Physical Society of Japan features articles exploring special transition-metal compounds that exhibit novel charge-orbital states.
-
Imaging Atomic Displacement in BaTiO3 with Neutron Holography
Measurement, instrumentation, and techniques
Structure and mechanical and thermal properties in condensed matter
2024-11-7
Newly developed neutron holography was applied to ferroelectric BaTiO3 to evaluate oxygen displacement, providing important structural information for improving the ability of dielectric materials to store electricity.