Geometry-Based Nonlinear and Nonequilibrium Phenomena in Solids
© The Physical Society of Japan
This article is on
J. Phys. Soc. Jpn.
92,
072001
(2023)
.
Researchers from The University of Tokyo have recently reviewed geometric aspects of nonlinear and nonequilibrium optical phenomena for advanced materials applications in novel solar panels, photodetectors, diodes, and quantum computing.
A solid crystal contains an innumerable number of electrons which give rise to various interesting and functional properties.
The geometric nature of electrons in solids, known as Bloch electrons, provides novel nonlinear and nonequilibrium phenomena, making its understanding crucial. Therefore, a group of researchers from Japan has recently reviewed the latest developments in the research of such phenomena in solids, with a focus on their geometrical aspects.
The geometrical phase of Bloch electrons is quantified by a parameter called the Berry connection, which measures the coordinate of a Bloch state located away from the center of the unit cell. Engineering the geometrical phase of electrons in crystals generates shift current, a bulk photovoltaic effect and nonreciprocal current, a nonlinear transport phenomenon.
While the Berry connection describes the nonlinear responses of electrons in bulk crystals, the nonequilibrium phenomena can be accounted for using the Floquet theory. It explains the time-evolution of an electron in an oscillating electromagnetic field, characteristic of periodically-driven systems.
The researchers highlight that by illuminating intense laser light, it is possible to drastically change the geometric properties of electrons in trivial materials to develop materials with interesting properties, such as topological insulators, magnets, and superconductors.
Furthermore, geometric nonlinear phenomena in inversion symmetry-broken materials have potential applications in several areas, such as solar panels made of bulk crystals, highly efficient photodetectors, and novel diodes. Also, light induced topological superconductivity could provide a new platform for quantum computing.
In summary, understanding the geometric aspects of nonlinear optical phenomena in crystals would facilitate advanced materials with novel applications.
J. Phys. Soc. Jpn.
92,
072001
(2023)
.
Share this topic
Fields
Related Articles
-
Shaping the Future of Materials Science with Tanabe–Sugano Diagrams
Dielectric, optical, and other properties in condensed matter
Electron states in condensed matter
Electronic structure and electrical properties of surfaces and nanostructures
Magnetic properties in condensed matter
2025-1-21
This special collection published in the Journal of the Physical Society of Japan celebrates 70 Years of Tanabe–Sugano Diagrams, highlighting their continued role in advancing materials with transition metals.
-
How to Construct a 3D Dirac Semimetal by Stacking 2D Massless Dirac Fermion Layers
Electron states in condensed matter
Electronic structure and electrical properties of surfaces and nanostructures
2025-1-14
Interlayer spin–orbit coupling originating from the anion potential gives rise to a 3D Dirac semimetal state that preserves inversion symmetry in the multilayer organic massless Dirac fermion system α-(ET)2I3.
-
Unlocking Secrets of Novel Charge-Orbital States in Transition-Metal Compounds
Cross-disciplinary physics and related areas of science and technology
Electron states in condensed matter
Electronic structure and electrical properties of surfaces and nanostructures
Magnetic properties in condensed matter
Structure and mechanical and thermal properties in condensed matter
2025-1-6
A new Special Topics edition of the Journal of the Physical Society of Japan features articles exploring special transition-metal compounds that exhibit novel charge-orbital states.
-
Large Thermoelectric Effect in High Mobility Semimetals
Electronic transport in condensed matter
2024-12-23
This study clarifies that the high mobility semimetal Ta2PdSe6 generates large Seebeck and Nernst effects at low temperatures, providing insight for exploring good thermoelectric materials for low-temperature applications.
-
The Stiffness of Electronic Nematicity
Dielectric, optical, and other properties in condensed matter
Electronic structure and electrical properties of surfaces and nanostructures
Electronic transport in condensed matter
2024-11-21
Using laser-excited photoelectron emission microscope (laser-PEEM) we found that the nematic stiffness in iron-based superconductors significantly increases as the systems become strange metals, suggesting that spin–orbital fluctuations enhance the stiffness of electronic nematicity.