Theoretical Assessment of F-wave Bottom Mesons and Their Properties
© The Physical Society of Japan
This article is on
Study of F-wave bottom mesons in heavy quark effective theory
(PTEP Editors' Choice)
Prog. Theor. Exp. Phys.
2022,
093B08
(2022)
.
In recent years, many studies have been conducted, both experimental and theoretical, on heavy-light hadrons, subatomic particles made of quarks. These include studies on the several new states of the D-meson family in facilities like the Large Hadron Collider beauty (LHCb)and others. Researchers have characterized the mass, decay width, and quantum numbers of these states for D mesons, which are the lightest particles containing a charm quark. However, the bottom meson (B-meson) family has remained relatively less explored.
The Particle Data Group lists only a few ground states and orbitally excited states for B-mesons, with very little experimental data for higher excited states. Various theoretical studies have been conducted on the B-meson family for 1S and 1P states. But, the theoretical models disagree on the placement of the newly observed BJ(5840)0,+and BJ(5960)0,+ ,and the strange bottom mesons, BsJ(6064) and BsJ(6114). Thus, there is a need to re-examine the higher excited states from a theoretical perspective.
In this study, we examine the properties of the 1F state using heavy quark effective theory (HQET), an effective theory describing the dynamics of heavy-light hadrons. HQET implements two approximate symmetries: the heavy quark symmetry and the chiral symmetry of light quarks. Using the HQET Lagrangians, we estimate the two body strong decays of heavy-light mesons and the coupling coefficients.
Further, using the experimental data from different experimental facilities, the 1F B-meson states are analyzed. This is done on the basis of two aspects, the masses of non-strange and strange 1F bottom meson states, and the decay behavior and channels of these states.
We first calculate the masses using averaged masses for charm mesons and heavy quark symmetry parameters. Thereafter, we estimate the masses of non-strange and strange 2+(13F2), 3+(1F3), 3+(1F’3), and 4+(13F4). The calculated masses are in good agreement with the existing theoretical models.
We next use the masses to compute the decay widths using pseudoscalar particles in the form of coupling constants. By comparing the calculated strong decay widths with the theoretical total decay widths, we find the upper bounds for associated couplings. While the lack of experimental data does not allow the calculation of the coupling constants from heavy quark symmetry, we are able to estimate the upper bounds for them. Finally, we construct Regge trajectories in the (J, M2) plane and our predictions fit nicely on Regge lines.
Overall, our findings can provide new directions to high energy experiments that are on the lookout for new particles and open doors to a deeper understanding of the fundamental structure of matter.
Study of F-wave bottom mesons in heavy quark effective theory
(PTEP Editors' Choice)
Prog. Theor. Exp. Phys.
2022,
093B08
(2022)
.
Share this topic
Fields
Related Articles
-
Understanding Non-Invertible Symmetries in Higher Dimensions Using Topological Defects
Theoretical Particle Physics
2024-9-27
By constructing Kramers-Wannier-Wegner duality and Z2 duality defects and deriving their crossing relations, this study presents the first examples of codimension one non-invertible symmetries in four-dimensional quantum field theories.
-
Quantum Mechanics of One-Dimensional Three-Body Contact Interactions
Mathematical methods, classical and quantum physics, relativity, gravitation, numerical simulation, computational modeling
Theoretical Particle Physics
2024-2-13
The quantum mechanical description of topologically nontrivial three-body contact interactions in one dimension is not well understood. This study explores the Hamiltonian description of these interactions using the path-integral formalism.
-
Investigating Unitarity Violation of Lee–Wick’s Complex Ghost with Quantum Field Theory
Theoretical Particle Physics
2024-1-19
Theories with fourth-order derivatives like Lee–Wick’s quantum electrodynamics model or quadratic gravity result in complex ghosts above a definite energy threshold that violate unitarity.
-
Investigating Δ and Ω Baryons as Meson–Baryon Bound States in Lattice Quantum Chromodynamics
Theoretical Particle Physics
2023-7-13
We investigate Δ and Ω baryons as meson–baryon bound states in lattice quantum chromodynamics and show that their difference results from the kinematic structure of the two meson–baryon systems, and not their interaction.
-
Novel Insights Into Bulk Reconstruction in the Anti-de Sitter/Conformal Field Theory Correspondence
Theoretical Particle Physics
2023-6-1
Bulk reconstruction in anti-de Sitter/conformal field theory is fundamental to our understanding of quantum gravity. We show that contrary to popular belief, bulk reconstruction is rather simple and intuitive.