New Chiral Molecular Ferroelectrics
© The Physical Society of Japan
This article is on
Ferroelectric Transition of a Chiral Molecular Crystal BINOL∙2DMSO
(JPSJ Editors' Choice)
J. Phys. Soc. Jpn.
91,
064702
(2022)
.
Left- and right-handed crystalline structures of BINOL∙2DMSO. Inside the chiral framework of BINOL, polar molecules DMSO produce the electric polarization.
Ferroelectrics are widely used for applications including capacitors, memory, and speakers. Despite the extensive research in this field, it remains challenging to theoretically predict new ferroelectric material groups, and in most cases, the discovery of new ferroelectric families is coincidental.
In this research, the authors report a new molecular ferroelectric material with a chiral crystal structure, 1,1’-bi-2-naphthol・2 dimethyl sulfoxide (BINOL・2DMSO). In this crystal, chiral molecules (BINOL) form the structural framework, and DMSO molecules are present at the gap as a guest. At room temperature, the orientation of the DMSO molecule is fluctuating. However, when the crystal is cooled down, the fluctuation is suppressed and the ordering of DMSO occurs at 190 K. At this point, the electric dipole moment of DMSO also orders, resulting in a ferroelectric transition along with the crystal-symmetry breaking. At 125 K, another structural transition occurs. The space group of the crystal subsequently changes as P41212 → P41 → P1121. Because of the chiral framework of BINOL, all of these crystal structures are also chiral.
This results of this study demonstrate that when chiral molecules such as BINOL incorporate polar molecules and form a composite molecular crystal, they generally become a chiral (anti-)ferroelectric crystal. This will be useful to guide future research into new chiral ferroelectric materials.
(Witten by T. Nomura on behalf of all authors)
Ferroelectric Transition of a Chiral Molecular Crystal BINOL∙2DMSO
(JPSJ Editors' Choice)
J. Phys. Soc. Jpn.
91,
064702
(2022)
.
Share this topic
Fields
Related Articles
-
Shaping the Future of Materials Science with Tanabe–Sugano Diagrams
Dielectric, optical, and other properties in condensed matter
Electron states in condensed matter
Electronic structure and electrical properties of surfaces and nanostructures
Magnetic properties in condensed matter
2025-1-21
This special collection published in the Journal of the Physical Society of Japan celebrates 70 Years of Tanabe–Sugano Diagrams, highlighting their continued role in advancing materials with transition metals.
-
The Stiffness of Electronic Nematicity
Dielectric, optical, and other properties in condensed matter
Electronic structure and electrical properties of surfaces and nanostructures
Electronic transport in condensed matter
2024-11-21
Using laser-excited photoelectron emission microscope (laser-PEEM) we found that the nematic stiffness in iron-based superconductors significantly increases as the systems become strange metals, suggesting that spin–orbital fluctuations enhance the stiffness of electronic nematicity.
-
Discovery of Light-Induced Mirror Symmetry Breaking
Dielectric, optical, and other properties in condensed matter
Electronic transport in condensed matter
2024-9-2
The authors discovered the light-induced mirror symmetry breaking, paving the way for controlling mirror symmetries via light and for realizing various phenomena utilizing the mirror symmetry breaking.
-
d2 Trimer and d3 Tetramer in a Pyrochlore Lattice
Dielectric, optical, and other properties in condensed matter
Electron states in condensed matter
2024-7-11
Based on the charge disproportionation of V3+ and V2+, the V3+(d2) trimers and V2+(d3) tetramers in the vanadium pyrochlore lattice of AlV2O4 are described by the orbitally-induced Peierls mechanism.
-
Structural Rotation and Falsely Chiral Antiferromagnetism: A New Combination Generating Ferrotoroidic State
Dielectric, optical, and other properties in condensed matter
Magnetic properties in condensed matter
2024-7-4
The ferrotoroidic state, an exotic state of matter with broken space inversion and time-reversal symmetries, was achieved by combining structural rotation and falsely chiral antiferromagnetism in PbMn2Ni6Te3O18.