Estimating Beta Decay Rates Better for Exotic Nuclei
© The Physical Society of Japan
This article is on
Electron wave functions in beta-decay formulas revisited (I): Gamow–Teller and spin-dipole contributions to allowed and first-forbidden transitions
(PTEP Editors' Choice)
Prog. Theor. Exp. Phys.
2021,
103D03
(2021)
.
Physicists from Japan demonstrate an improved estimation of the beta decay rate in heavy nuclei by considering next-to-leading-order approximation for the electron wave function distorted by the Coulomb potential.
The physics of exotic nuclei, or nuclei with short lifetimes, is often governed by beta decay, a process in which a neutron decays into a proton, an electron, and an antineutrino. The decay rate is estimated by calculating the product of the electron and nuclear current densities. A widely used formula for calculating this rate relies on a leading-order approximation of the electron wave functions distorted by the Coulomb potential. However, for heavy nuclei with large atomic numbers, this simple approximation may no longer be valid.
To address this issue, physicists from Japan developed a simple approach for improving the conventional formula to apply for the case of heavy nuclei. They treated the neutrino wave function as an exact plane wave and numerically solved for the electron wave functions to obtain both leading-order (or LO) and next-to-leading-order (or NLO) approximations. The physicists then showed that the LO approximation led to an overestimation of the decay rate while the NLO approximation better reproduced the exact result for a schematic transition density as well as for the transition densities obtained by a nuclear energy-density functional method.
The proposed formula could significantly impact our understanding of the origin and formation of heavy elements in our universe and perhaps open a window into yet-undiscovered physics lying beyond the standard model of particle physics.
Electron wave functions in beta-decay formulas revisited (I): Gamow–Teller and spin-dipole contributions to allowed and first-forbidden transitions
(PTEP Editors' Choice)
Prog. Theor. Exp. Phys.
2021,
103D03
(2021)
.
Share this topic
Fields
Related Articles
-
Implementation of Nuclear Many-Body Wave Functions via Superpositions of Localized Gaussians
Nuclear physics
2025-1-9
An extended version of antisymmetrized molecular dynamics integrated with a mean-field model is proposed, and its potential is demonstrated.
-
Revival of JRR-3: A New Frontier in Neutron Scattering Research
Cross-disciplinary physics and related areas of science and technology
Elementary particles, fields, and strings
Magnetic properties in condensed matter
Measurement, instrumentation, and techniques
Nuclear physics
2024-11-12
This Special Topics edition of JPSJ details the capabilities and upgrades made to the instruments at JRR-3, since its shutdown after the Great East Japan Earthquake and 2011.
-
A Promising Solution to Nucleon–Nucleon Inverse Scattering Problem
General and Mathematical Physics
Mathematical methods, classical and quantum physics, relativity, gravitation, numerical simulation, computational modeling
Nuclear physics
2024-10-7
This study deals with the inverse elastic two-body quantum scattering problem using Volterra approximations and neural networks, offering a novel approach for solving complex nonlinear systems.
-
A New Method for Finding Bound States in the Continuum
General and Mathematical Physics
Mathematical methods, classical and quantum physics, relativity, gravitation, numerical simulation, computational modeling
Nuclear physics
2024-10-1
This study presents a general theory for constructing potentials supporting bound states in the continuum, offering a method for identifying such states in real quantum systems.
-
Highly Accurate Estimation of Beta Decay Rates for Heavy Nuclei
Nuclear physics
2023-11-7
Physicists from Japan present complete formulas that consider the induced current and velocity-dependent terms for estimating the beta decay rates in heavy nuclei with high accuracy.