Overlooked Materials Host Rich Physics of Strongly Correlated Electrons
© The Physical Society of Japan
This article is on
Spin-Orbit-Entangled Electronic Phases in 4d and 5d Transition-Metal Compounds
J. Phys. Soc. Jpn.
90,
062001
(2021)
.
An international team of researchers reviews the research progress on strongly spin-orbit coupled systems, providing an overview of theoretically predicted electronic phases, candidate materials, and unusual experimental observations.
3d transition metal oxides (or oxides containing a transition metal ion with an unfilled 3d sub-shell) have been of much interest to condensed matter scientists, owing to the rich interplay between the spin and orbital motion of electrons in these materials. In contrast, 4d and 5d transition metal oxides have not been explored in detail until now, because of weak electron correlations, compared to 3d transition metal oxides.
However, with the discovery of effects of strong spin-orbit coupling (or SOC) in a 5d transition metal oxide, the tide turned for 4d and 5d transition metal compounds, which are now known to give rise to a rich variety of exotic spin-orbit entangled states depending on the d-orbital electron configuration, chemical bonds, and lattice geometry.
In a new study published in the Journal of the Physical Society of Japan, an international team of researchers took stock of the emerging 4d and 5d transition metal oxides, exploring the exotic phases induced by SOC in these materials and the possibility of their realization. On one hand, the researchers highlighted several novel phenomena expected to emerge from theoretical considerations but requires development of novel materials for their realization. On the other, they took note of several experimentally observed unusual behaviors that are lacking in realistic theories. Finally, they provided speculations about unknown exotic phases yet to be discovered.
The study shows that 4d and 5d transition metal compounds are a mine of novel quantum phases waiting to be discovered and explored, thus providing a fertile ground for future research in condensed matter physics.
Spin-Orbit-Entangled Electronic Phases in 4d and 5d Transition-Metal Compounds
J. Phys. Soc. Jpn.
90,
062001
(2021)
.
Share this topic
Fields
Related Articles
-
Shaping the Future of Materials Science with Tanabe–Sugano Diagrams
Dielectric, optical, and other properties in condensed matter
Electron states in condensed matter
Electronic structure and electrical properties of surfaces and nanostructures
Magnetic properties in condensed matter
2025-1-21
This special collection published in the Journal of the Physical Society of Japan celebrates 70 Years of Tanabe–Sugano Diagrams, highlighting their continued role in advancing materials with transition metals.
-
How to Construct a 3D Dirac Semimetal by Stacking 2D Massless Dirac Fermion Layers
Electron states in condensed matter
Electronic structure and electrical properties of surfaces and nanostructures
2025-1-14
Interlayer spin–orbit coupling originating from the anion potential gives rise to a 3D Dirac semimetal state that preserves inversion symmetry in the multilayer organic massless Dirac fermion system α-(ET)2I3.
-
Unlocking Secrets of Novel Charge-Orbital States in Transition-Metal Compounds
Cross-disciplinary physics and related areas of science and technology
Electron states in condensed matter
Electronic structure and electrical properties of surfaces and nanostructures
Magnetic properties in condensed matter
Structure and mechanical and thermal properties in condensed matter
2025-1-6
A new Special Topics edition of the Journal of the Physical Society of Japan features articles exploring special transition-metal compounds that exhibit novel charge-orbital states.
-
Large Thermoelectric Effect in High Mobility Semimetals
Electronic transport in condensed matter
2024-12-23
This study clarifies that the high mobility semimetal Ta2PdSe6 generates large Seebeck and Nernst effects at low temperatures, providing insight for exploring good thermoelectric materials for low-temperature applications.
-
A New Method for Probing Hidden Multipoles in Crystal Field Quartet Using Ultrasonic Waves
Magnetic properties in condensed matter
2024-12-16
A new method of acoustically driven resonance is proposed to unveil the multipole degrees of freedom of a crystal-field quartet and demonstrate the realization of spin acoustic control.