Understanding Relaxor Ferroelectrics with Simple Landau Theory
© The Physical Society of Japan
This article is on
Nonlinear Dielectric Susceptibility in Pb(Sc1/2Ta1/2)O3 Single Crystals
J. Phys. Soc. Jpn.
91,
054702
(2022)
.
Third-order nonlinear dielectric susceptibility is measured in the paraelectric phase of Pb(Sc1/2Ta1/2)O3. The linear and nonlinear dielectric susceptibility results can be consistently explained based on the Landau-type free-energy density.
Pb(Sc1/2Ta1/2)O3(PST) is a perovskite-type ferroelectric oxide that exhibits relaxor-like characteristics. A relaxor is a material that exhibits a diffuse phase transition with a wideband dispersion in dielectric permittivity over many orders of magnitude. One of the most challenging issues in the physics of ferroelectrics is to understand the inherent dielectric properties of relaxor ferroelectrics.
To explain the physical properties of relaxors, many theoretical models based on the dipolar-glass transition have been proposed wherein the third-order nonlinear dielectric susceptibility e3 was theoretically predicted to indicate a negative divergence at the dipolar-glass transition temperature. However, it has been reported that in some relaxor ferroelectrics, the measured e3 takes positive values without any indication of divergence near the temperature Tm at which the linear permittivity is maximum. This is inconsistent with the predictions made by the theoretical models based on the dipolar-glass phase transition. Therefore, to explain the temperature dependence of e3, a new model is required. The ferroelectric critical endpoint (CEP) in the temperature–field phase diagram in many perovskite relaxor ferroelectrics has been extensively investigated. The PST temperature–field phase diagram has been obtained, and the existence of ferroelectric CEP was demonstrated. The appearance of the ferroelectric CEP in relaxors implies that relaxor ferroelectrics can be investigated based on the simple Landau-type free-energy density, similar to a conventional ferroelectric material, without any complex models based on dipolar-glass phases. Under these circumstances, in the present study, the linear and nonlinear dielectric susceptibilities in the paraelectric phase of PST were measured. The results were explained based on the Landau-type free-energy density.
The experimental results reveal that e3 takes a positive value near Tm (approximately 14 °C) and becomes negative above T1 = 33.4 °C. It was concluded that the positive e3 near Tm in PST results from the first-order transition because the sign of b (coefficient of the fourth-order term of the polarization in the Landau-type free-energy density) directly depends on the sign of e3. Furthermore, a change in the sign of e3 near the transition temperature in PST indicates that b is relatively small, thereby implying that the phase transition in PST is close to the second-order transition. Such a change in the sign of e3 in paraelectric phase has been reported for several perovskite-type ferroelectrics, such as BaTi1–xZrxO3, PZN–PT, and PMN–PT, which indicates that it might be a property common to many perovskite ferroelectrics.
In this study, the relationship between the third-order susceptibility e3 and ferroelectric phase transition in PST was clarified based on macroscopic thermodynamics.
(written by M. Iwata on behalf of all authors)
Nonlinear Dielectric Susceptibility in Pb(Sc1/2Ta1/2)O3 Single Crystals
J. Phys. Soc. Jpn.
91,
054702
(2022)
.
Share this topic
Fields
Related Articles
-
The Stiffness of Electronic Nematicity
Dielectric, optical, and other properties in condensed matter
Electronic structure and electrical properties of surfaces and nanostructures
Electronic transport in condensed matter
2024-11-21
Using laser-excited photoelectron emission microscope (laser-PEEM) we found that the nematic stiffness in iron-based superconductors significantly increases as the systems become strange metals, suggesting that spin–orbital fluctuations enhance the stiffness of electronic nematicity.
-
Revival of JRR-3: A New Frontier in Neutron Scattering Research
Cross-disciplinary physics and related areas of science and technology
Elementary particles, fields, and strings
Magnetic properties in condensed matter
Measurement, instrumentation, and techniques
Nuclear physics
2024-11-12
This Special Topics edition of JPSJ details the capabilities and upgrades made to the instruments at JRR-3, since its shutdown after the Great East Japan Earthquake and 2011.
-
Imaging Atomic Displacement in BaTiO3 with Neutron Holography
Measurement, instrumentation, and techniques
Structure and mechanical and thermal properties in condensed matter
2024-11-7
Newly developed neutron holography was applied to ferroelectric BaTiO3 to evaluate oxygen displacement, providing important structural information for improving the ability of dielectric materials to store electricity.
-
Electricity Provides Cooling
Cross-disciplinary physics and related areas of science and technology
Magnetic properties in condensed matter
Structure and mechanical and thermal properties in condensed matter
2024-10-15
Electric cooling at low temperatures is successfully achieved using a ferroelectric ferromagnetic solid instead of refrigerant gases such as fluorocarbons. -
Pressure-Tuned Classical–Quantum Crossover in Magnetic Field-Induced Quantum Phase Transitions of a Triangular-Lattice Antiferromagnet
Cross-disciplinary physics and related areas of science and technology
Electron states in condensed matter
Magnetic properties in condensed matter
2024-9-5
The correspondence principle states that as quantum numbers approach infinity, the nature of a system described by quantum mechanics should match that described by classical mechanics. Quantum phenomena, such as quantum superposition and quantum correlation, generally become unobservable when a system approaches this regime. Conversely, as quantum numbers decrease, classical descriptions give way to observable quantum effects. The external approach to classical–quantum crossover has attracted research interest. This study aims to demonstrate a method for achieving such control in materials.