The Mysteries of Charge Order and Charge Fluctuations in Cuprate Superconductors
© The Physical Society of Japan
This article is on
JPSJ Special Topics on "Charge Orders and Fluctuations in Cuprate High-temperature Superconductors"
J. Phys. Soc. Jpn.
Vol. 90 No. 11, (2021)
.
Cuprate superconductors, discovered in 1986, still confront researchers of condensed matter physics with unresolved challenges. On top of this, superconductivity research is now booming again—thanks to recent studies that demonstrate how phenomena like charge order and fluctuations can coexist and interact with high-temperature superconductivity.
To help researchers approach the daunting amount of literature on this subject, the Special Topics issue of the Journal of the Physical Society of Japan includes 12 papers on recent experimental and theoretical research on remarkable new phenomena in high-temperature superconductors.
First, Uchida provides an overview of the field and future prospects, while Tranquada and colleagues pursue the relationship between charge order and superconductivity using scattering and transport techniques in cuprate families.
Fujita and colleagues provide an atomic-scale visualization of Cooper-pair density waves using scanning tunneling microscopy techniques. Meanwhile, Lee summarizes recent findings on the charge density wave in superconducting cuprates using X-ray scattering.
Also employing X-ray scattering techniques, Arpaia and Ghiringhelli explore high temperature and high energy charge fluctuations, whereas Le Tacon and colleagues investigate charge order and phonon anomalies under uniaxial stress.
Abbamonte and colleagues search for a new ordered state using X-ray diffraction, and Kawasaki and colleagues employ nuclear magnetic resonance to probe charge order and fluctuations.
On the theoretical side, Imada explores the relationships between charge order and superconductivity and how to measure them using spectroscopic methods.
Devereaux and colleagues analyze charge-spin fluctuations using large-scale numerical calculation of the Hubbard model, while Yamase delves into the theory of bond charge order, collective charge fluctuations, and nematic order. Finally, Kontani and colleagues explore the theory of various liquid crystal orders in cuprate superconductors and related materials.
The sheer amount of knowledge that has been accumulated on high-temperature superconductivity makes it hard for new researchers to approach the subject, but this issue will hopefully be a useful source of information so that anyone can approach and grasp the hottest spots of the field.
JPSJ Special Topics on "Charge Orders and Fluctuations in Cuprate High-temperature Superconductors"
J. Phys. Soc. Jpn.
Vol. 90 No. 11,
(2021)
.
Share this topic
Fields
Related Articles
-
The Stiffness of Electronic Nematicity
Dielectric, optical, and other properties in condensed matter
Electronic structure and electrical properties of surfaces and nanostructures
Electronic transport in condensed matter
2024-11-21
Using laser-excited photoelectron emission microscope (laser-PEEM) we found that the nematic stiffness in iron-based superconductors significantly increases as the systems become strange metals, suggesting that spin–orbital fluctuations enhance the stiffness of electronic nematicity.
-
Revival of JRR-3: A New Frontier in Neutron Scattering Research
Cross-disciplinary physics and related areas of science and technology
Elementary particles, fields, and strings
Magnetic properties in condensed matter
Measurement, instrumentation, and techniques
Nuclear physics
2024-11-12
This Special Topics edition of JPSJ details the capabilities and upgrades made to the instruments at JRR-3, since its shutdown after the Great East Japan Earthquake and 2011.
-
Imaging Atomic Displacement in BaTiO3 with Neutron Holography
Measurement, instrumentation, and techniques
Structure and mechanical and thermal properties in condensed matter
2024-11-7
Newly developed neutron holography was applied to ferroelectric BaTiO3 to evaluate oxygen displacement, providing important structural information for improving the ability of dielectric materials to store electricity.
-
Chiral Gauge Field and Topological Magnetoelectric Response in Fully Spin-Polarized Magnetic Weyl Semimetal Co3Sn2S2
Electronic transport in condensed matter
Magnetic properties in condensed matter
2024-11-1
This study clarifies the relationship between magnetic ordering and chiral gauge fields in the ferromagnetic Weyl semimetal Co3Sn2S2, highlighting its spintronic potential using the topological magnetoelectric responses of Weyl fermions.
-
Electricity Provides Cooling
Cross-disciplinary physics and related areas of science and technology
Magnetic properties in condensed matter
Structure and mechanical and thermal properties in condensed matter
2024-10-15
Electric cooling at low temperatures is successfully achieved using a ferroelectric ferromagnetic solid instead of refrigerant gases such as fluorocarbons.