Overlooked Materials Host Rich Physics of Strongly Correlated Electrons
© The Physical Society of Japan
This article is on
Spin-Orbit-Entangled Electronic Phases in 4d and 5d Transition-Metal Compounds
J. Phys. Soc. Jpn.
90,
062001
(2021)
.
An international team of researchers reviews the research progress on strongly spin-orbit coupled systems, providing an overview of theoretically predicted electronic phases, candidate materials, and unusual experimental observations.
3d transition metal oxides (or oxides containing a transition metal ion with an unfilled 3d sub-shell) have been of much interest to condensed matter scientists, owing to the rich interplay between the spin and orbital motion of electrons in these materials. In contrast, 4d and 5d transition metal oxides have not been explored in detail until now, because of weak electron correlations, compared to 3d transition metal oxides.
However, with the discovery of effects of strong spin-orbit coupling (or SOC) in a 5d transition metal oxide, the tide turned for 4d and 5d transition metal compounds, which are now known to give rise to a rich variety of exotic spin-orbit entangled states depending on the d-orbital electron configuration, chemical bonds, and lattice geometry.
In a new study published in the Journal of the Physical Society of Japan, an international team of researchers took stock of the emerging 4d and 5d transition metal oxides, exploring the exotic phases induced by SOC in these materials and the possibility of their realization. On one hand, the researchers highlighted several novel phenomena expected to emerge from theoretical considerations but requires development of novel materials for their realization. On the other, they took note of several experimentally observed unusual behaviors that are lacking in realistic theories. Finally, they provided speculations about unknown exotic phases yet to be discovered.
The study shows that 4d and 5d transition metal compounds are a mine of novel quantum phases waiting to be discovered and explored, thus providing a fertile ground for future research in condensed matter physics.
Spin-Orbit-Entangled Electronic Phases in 4d and 5d Transition-Metal Compounds
J. Phys. Soc. Jpn.
90,
062001
(2021)
.
Share this topic
Fields
Related Articles
-
A New Method for Probing Hidden Multipoles in Crystal Field Quartet Using Ultrasonic Waves
Magnetic properties in condensed matter
2024-12-16
A new method of acoustically driven resonance is proposed to unveil the multipole degrees of freedom of a crystal-field quartet and demonstrate the realization of spin acoustic control.
-
Towards Next Generation Magnetic Storage: Magnetic Skyrmions in EuPtSi
Magnetic properties in condensed matter
2024-12-10
This study explores the magnetic behavior of rare-earth magnet EuPtSi using single-crystal neutron diffraction, potentially revealing magnetic skyrmion lattice formation.
-
The Stiffness of Electronic Nematicity
Dielectric, optical, and other properties in condensed matter
Electronic structure and electrical properties of surfaces and nanostructures
Electronic transport in condensed matter
2024-11-21
Using laser-excited photoelectron emission microscope (laser-PEEM) we found that the nematic stiffness in iron-based superconductors significantly increases as the systems become strange metals, suggesting that spin–orbital fluctuations enhance the stiffness of electronic nematicity.
-
Revival of JRR-3: A New Frontier in Neutron Scattering Research
Cross-disciplinary physics and related areas of science and technology
Elementary particles, fields, and strings
Magnetic properties in condensed matter
Measurement, instrumentation, and techniques
Nuclear physics
2024-11-12
This Special Topics edition of JPSJ details the capabilities and upgrades made to the instruments at JRR-3, since its shutdown after the Great East Japan Earthquake and 2011.
-
Chiral Gauge Field and Topological Magnetoelectric Response in Fully Spin-Polarized Magnetic Weyl Semimetal Co3Sn2S2
Electronic transport in condensed matter
Magnetic properties in condensed matter
2024-11-1
This study clarifies the relationship between magnetic ordering and chiral gauge fields in the ferromagnetic Weyl semimetal Co3Sn2S2, highlighting its spintronic potential using the topological magnetoelectric responses of Weyl fermions.