A New Superconductor Family with Various Magnetic Elements
© The Physical Society of Japan
This article is on
Superconductivity in Ternary Scandium Telluride Sc6MTe2 with 3d, 4d, and 5d Transition Metalss
(JPSJ Editors' Choice)
J. Phys. Soc. Jpn.
92,
103701
(2023)
.
A new superconductor family, Sc6MTe2, has been discovered, comprising seven variations with magnetic elements labeled as M. Notably, only a few known superconductor families exist that involve various magnetic elements.
Understanding the connection between superconductivity, which is when a material loses all electrical resistance at low temperatures, and magnetism, a magnetic property of material, is significantly intricate. Normally, strong magnetism disrupts superconductivity; hence, materials with magnetic elements like iron tend not to exhibit superconductivity. However, materials containing magnetic elements rarely display unconventional superconductivity with remarkably high transition temperatures or unusual characteristics that defy existing theories. Unraveling the complex relationship between superconductivity and magnetism may be crucial for achieving superconductivity at room temperature. Discovering unique superconductors plays a key role in shedding light on this condition.
We investigated a family of materials, Sc6MTe2, consisting of scandium (Sc), tellurium (Te), and various magnetic elements like iron, cobalt, and nickel. These materials exhibit superconductivity in different cases, with specific superconducting transition temperatures varying depending on the magnetic element. For instance, Sc6FeTe2 boasts the highest transition temperature of Tc = 4.7 K. Families of superconductors containing diverse magnetic elements are quite rare. We anticipate that further research on this superconductor family will enhance our understanding of the interplay between superconductivity and magnetic elements.
Author: Yoshihiko Okamoto, representing all the authors.
Superconductivity in Ternary Scandium Telluride Sc6MTe2 with 3d, 4d, and 5d Transition Metalss
(JPSJ Editors' Choice)
J. Phys. Soc. Jpn.
92,
103701
(2023)
.
Share this topic
Fields
Related Articles
-
Revival of JRR-3: A New Frontier in Neutron Scattering Research
Cross-disciplinary physics and related areas of science and technology
Elementary particles, fields, and strings
Magnetic properties in condensed matter
Measurement, instrumentation, and techniques
Nuclear physics
2024-11-12
This Special Topics edition of JPSJ details the capabilities and upgrades made to the instruments at JRR-3, since its shutdown after the Great East Japan Earthquake and 2011.
-
Fermi Machine — Quantum Many-Body Solver Derived from Mapping between Noninteracting and Strongly Correlated Fermions
Electron states in condensed matter
Measurement, instrumentation, and techniques
2024-10-29
Strongly interacting quantum many-body states can be mapped to noninteracting quantum states, enabling a new quantum neural network called the Fermi machine to solve strongly correlated electron problems.
-
Electricity Provides Cooling
Cross-disciplinary physics and related areas of science and technology
Magnetic properties in condensed matter
Structure and mechanical and thermal properties in condensed matter
2024-10-15
Electric cooling at low temperatures is successfully achieved using a ferroelectric ferromagnetic solid instead of refrigerant gases such as fluorocarbons. -
Single-Crystal Growth of a Cuprate Superconductor with the Highest Critical Temperature
Superconductivity
2024-5-20
Millimeter-sized single crystals of a trilayer cuprate superconductor (Hg,Re)Ba2Ca2Cu3O8+δ that exhibits the highest superconducting transition temperature under ambient pressure, were grown reproducibly and safely.
-
Pressure-Tuned Classical–Quantum Crossover in Magnetic Field-Induced Quantum Phase Transitions of a Triangular-Lattice Antiferromagnet
Cross-disciplinary physics and related areas of science and technology
Electron states in condensed matter
Magnetic properties in condensed matter
2024-9-5
The correspondence principle states that as quantum numbers approach infinity, the nature of a system described by quantum mechanics should match that described by classical mechanics. Quantum phenomena, such as quantum superposition and quantum correlation, generally become unobservable when a system approaches this regime. Conversely, as quantum numbers decrease, classical descriptions give way to observable quantum effects. The external approach to classical–quantum crossover has attracted research interest. This study aims to demonstrate a method for achieving such control in materials.