Origin of Metamagnetic Transition (MMT) in the Spin-Triplet Superconductivity in UTe2
© The Physical Society of Japan
This article is on
Magnetovolume Effect on the First-Order Metamagnetic Transition in UTe2
(JPSJ Editors' Choice)
J. Phys. Soc. Jpn. 91, 063703 (2022).
State-of-the-art magnetostriction measurements in a pulsed-magnetic field reveal the origin of a metamagnetic transition of spin-triplet superconductor UTe2. We propose that the uranium valence fluctuation plays a crucial role in its metamagnetic and superconducting transitions.
The metamagnetism realized in heavy fermion systems has been well studied to date. At the metamagnetic transition/crossover fields, magnetization increases discontinuously/non-lineally, and fluctuations develop. Consequently, the effective mass increases. Thus, the metamagnetism may induce a new quantum state, such as a superconducting transition. The uranium-based ferromagnetic superconductors have been good playgrounds to study the relationship between metamagnetism and superconductivity. Quite recently, another related system, UTe2, was discovered.
The superconductivity in a paramagnetic heavy fermion system, UTe2, became a hot topic in condensed matter physics community since the realization of the spin-triplet state, which is expected for use in quantum computing. The external stimuli, such as pressure, magnetic field, and its applied direction, make UTe2 more attractive. The most remarkable feature is the magnetic-field-direction controlled superconductivity. For H || b axis, superconductivity is reinforced by increasing the fields but is killed at the metamagnetic field Hm ~ 35 T, where a first-order metamagnetic transition takes place. However, the field applied near the orthorhombic [011] direction induces another superconducting phase above Hm. Because experimental probes usable under such extreme conditions were limited, the role of metamagnetic transition in the appearance/disappearance of superconductivity is far from complete understanding. Moreover, the metamagnetism in UTe2 must be more clarified. These still remain a big challenge for experimentalists.
Magnetostriction, that is, the length/volume change with magnetic field, should offer hints at the aforementioned issues. The authors have developed magnetostriction measurements combining the fiber Bragg grating fiber optics and optical filter method that cover a wide range of ultra-high-magnetic fields beyond 100 T. A new attempt demonstrated in this article is simultaneous magnetostriction measurements up to 55 T. We obtained the linear magnetostriction along the two principal axes within a one-field scan; thus, we could perform measurements efficiently. This improvement also enables us to confirm the reliability and reproducibility of the magnetostriction measurements. Using a single crystal of UTe2, we revealed the magnetostrictions along all principal axes and the volume change at Hm.
Across Hm approaching from the lower fields, the volume shrinks discontinuously. This volume discontinuity well explains the pressure dependence of Hm and magnetic susceptibility reported earlier. Furthermore, we revealed that the metamagnetic transition in UTe2 involves anisotropic lattice deformation. Considering the localized and itinerant duality nature of uranium ions, we proposed that the uranium valence transition is the origin of metamagnetism. We also discussed the singular behavior in UTe2
by comparing it with the other heavy fermion systems. Our findings deepen the understanding of the fascinated physics realized in UTe2.
(The figure has been replaced as of July 19, 2022)
(Written by A. Miyake on behalf of all authors)
Magnetovolume Effect on the First-Order Metamagnetic Transition in UTe2
(JPSJ Editors' Choice)
J. Phys. Soc. Jpn. 91, 063703 (2022).
Share this topic
Fields
Related Articles
-
Pressure-Tuned Classical–Quantum Crossover in Magnetic Field-Induced Quantum Phase Transitions of a Triangular-Lattice Antiferromagnet
Magnetic properties in condensed matter
Electron states in condensed matter
Cross-disciplinary physics and related areas of science and technology
2024-9-5
The correspondence principle states that as quantum numbers approach infinity, the nature of a system described by quantum mechanics should match that described by classical mechanics. Quantum phenomena, such as quantum superposition and quantum correlation, generally become unobservable when a system approaches this regime. Conversely, as quantum numbers decrease, classical descriptions give way to observable quantum effects. The external approach to classical–quantum crossover has attracted research interest. This study aims to demonstrate a method for achieving such control in materials.
-
The Mysterious Superconductivity of Sr2RuO4
Superconductivity
2024-8-22
Researchers review the recent advancements made towards solving the mysteries of the unconventional superconductivity of Sr2RuO4, analyzing recent experiments and theoretical models and proposing approaches to resolve current challenges.
-
Discovery of Unconventional Pressure-Induced Superconductivity in CrAs
Superconductivity
Electronic transport in condensed matter
2024-8-13
A new study has discovered pressure-induced superconductivity in the helimagnet CrAs, originating in the vicinity of the helimagnetic ordering, representing the first example of superconductivity in Cr-based magnetic systems.
-
Unification of Spin Helicity in the Magnetic Skyrmion Lattice of EuNiGe3
Magnetic properties in condensed matter
2024-8-7
In the magnetic skyrmion lattice of non-centrosymmetric EuNiGe3, the original magnetic helicity, determined by the antisymmetric exchange interaction, is reversed, resulting in a unified helicity.
-
Antiferromagnetism Induces Dissipationless Transverse Conductivity
Electronic transport in condensed matter
Magnetic properties in condensed matter
Electronic structure and electrical properties of surfaces and nanostructures
2024-7-24
An investigation using high-quality NbMnP crystals demonstrates that the anomalous Hall conductivity arising from antiferromagnetism is dissipationless, as expected from the intrinsic mechanism.