Topological Aspects of a Nonlinear System: The Dimerized Toda Lattice
© The Physical Society of Japan
This article is on
Topological Edge States and Bulk-edge Correspondence in Dimerized Toda Lattice
(JPSJ Editors' Choice)
J. Phys. Soc. Jpn. 91, 024703 (2022).
A nonlinear topological phase is shown to emerge in the dimerized Toda lattice. It is experimentally detectable by measuring the voltage propagation in electric circuits.

Nonlinear physics is an extensively studied field that is highlighted by the emergence of solitons and chaos. A soliton is a solitary wave that is stabilized by the nonlinear term. It is originally proposed in the surface wave of water and then found in various systems. The Toda lattice is a typical nonlinear model possessing an exact soliton solution. It is experimentally realized in a transmission line consisting of inductors and variable-capacitance diodes, where the variable-capacitance diodes provide the nonlinear elements. A stable voltage propagation was observed in this transmission line. In contrast, the topological physics is an emerging field, where characteristic topological edge states emerge in the topological phase. The Su–Schrieffer–Heeger (SSH) model is the simplest example of a topological insulator, where the bonds are alternating. To date, nonlinear and topological physics were studied independently. It is an interesting problem to study a nonlinear topological physics, which will open a new field of physics.
We generalize the Toda lattice to a dimerized Toda lattice as in the case of the SSH model. We show that this model is realized by changing the inductance alternately in the transmission line realizing the Toda lattice. This model has topological edge states although it is a nonlinear model. We verify it by investigating the quench dynamics, where we apply a voltage at the edge node and explore its time evolution. The voltage propagates freely along the chain in the trivial phase, whereas it remains at the edge node in the topological phase. Hence, the absence and the existence of the topological edge states are well signaled by the voltage propagation dynamics. Thus, nonlinear topological physics will be relatively easily realized and studied experimentally in electric circuits. This result will open a new field of nonlinear topological physics.
(Written by M. Ezawa)
Topological Edge States and Bulk-edge Correspondence in Dimerized Toda Lattice
(JPSJ Editors' Choice)
J. Phys. Soc. Jpn. 91, 024703 (2022).
Share this topic
Fields
Related Articles
-
High Magnetic Field as a Tool for Discovery in Condensed Matter Physics
Magnetic properties in condensed matter
Dielectric, optical, and other properties in condensed matter
Electronic transport in condensed matter
Structure and mechanical and thermal properties in condensed matter
Electron states in condensed matter
Electronic structure and electrical properties of surfaces and nanostructures
Measurement, instrumentation, and techniques
2022-12-13
The Journal of the Physical Society of Japan highlights in this special topic recent advances in modern physics that have been realized with the generation of pulsed high magnetic fields.
-
Strange Metal Behavior Potentially Associated to Hidden Electronic Nematicity
Superconductivity
Electronic transport in condensed matter
2022-11-10
Iron-based superconductor, Ba1-xRbxFe2As2, exhibits “strange metal” behavior—linear dependence of resistivity on temperature. It seems that hidden electronic nematic fluctuations play a greater role than the well-known antiferromagnetic fluctuations.
-
Thermoelectric Response in Strongly Disordered Systems
Electronic transport in condensed matter
2022-11-7
Based on the Kubo–Luttinger linear response theory, we discovered that the low-T Seebeck coefficient for Mott variable-range hopping in a d-dimensional system varies as S ∝ Td/(d+1), which is different from the conventional S ∝ T(d−1)/(d+1). In addition, the experimental data for S of CuCrTiS4 at low T are in excellent agreement with our prediction S ∝ T3/4 (d = 3).
-
Spin-Orbit Coupled Electrons on Kagome Lattice Give Rise to Various Magnetic Orderings
Electronic structure and electrical properties of surfaces and nanostructures
2022-8-10
Diverse magnetic orderings are found to be produced by spin-orbit coupled electrons on the kagome lattice. This finding provides a unified guiding principle for the design of magnetic topological materials.
-
A New Route to the Realization of Topological Superconductivity
Superconductivity
Electronic structure and electrical properties of surfaces and nanostructures
2022-8-1
We theoretically suggest that topological Weyl superconductivity can be realized by applying a supercurrent to noncentrosymmetric line-nodal superconductors with spin–orbit coupling.