Exploring the Basic Principles and Functionalities of Spintronic Thermal Management
© The Physical Society of Japan
This article is on
Spintronic Thermal Management
J. Phys. Soc. Jpn. 90, 122001 (2021).
Scientists propose a new spin caloritronics concept called “spintronic thermal management” and provide a comprehensive overview of basic principles, physical behaviors, and heat control functionalities associated with the concept.
Electrons in an atom possess spins with two states, one facing upwards and the other downwards. The magnetic moments and degrees of freedom associated with the spins can be manipulated to carry information and transfer energy. Spin caloritronics is a new and upcoming field of research that looks for new ways to drive and control thermal transport and thermoelectric conversion mediated by the spin of electrons.
Most of the fundamental research in this field is focused on heat-to-charge and heat-to-spin conversion phenomena shown by hybrid structures and magnetic materials, and not much is known about the spin-caloritronic properties that give rise to heat currents.
To unravel properties of heat conversion, generation, and transport mediated by spin, a team of researchers from Japan proposed a new concept called “spintronic thermal management.” The concept provides a window to the demonstration of unique heat control functionalities such as local temperature modulation, spintronic thermal switching, active control of thermoelectric conversion, and unidirectional remote heating.
The team also classified the basic behaviors of spintronic thermal management into magneto-thermoelectric effects, thermomagnetic effects, and thermospin effects based on an extensive overview of the conversion phenomenon between spin, charge, and heat currents associated with spin caloritronics.
Ultimately, the study provides a comprehensive understanding of a basic physical phenomenon that opens up avenues for new material development and device engineering for spintronic thermal management. These findings could also come in handy while designing advanced thermal management technologies for high-functioning and reliable electronic devices with better heat distribution and cooling systems.
Spintronic Thermal Management
J. Phys. Soc. Jpn. 90, 122001 (2021).
Share this topic
Fields
Related Articles
-
What Determines Non-Newtonian Flow Behavior in Glass-Forming Liquids?
Cross-disciplinary physics and related areas of science and technology
Structure and mechanical and thermal properties in condensed matter
2023-3-20
Even minute structural changes can lead to significant reductions in the flow resistances of glass-forming liquids. Here, possible scenarios and predictions for two different classes of glass-forming liquids are provided.
-
Clockwise or Anticlockwise, That is the Question: Phonons with Angular Momentum in Chiral Crystals
Structure and mechanical and thermal properties in condensed matter
2023-3-7
Chiral crystals have lattice structures with no mirror or inversion symmetries.
A few basic questions about their unique phonon excitations with intrinsic angular momentum are answered. -
Non-Trivial Superconductivity in the Semimetal EuAuBi
Superconductivity
Magnetic properties in condensed matter
2023-2-22
Magnetic order and superconductivity coexist in a noncentrosymmetric topological semimetal, EuAuBi. EuAuBi exhibits a large, anisotropic critical field with Rashba spin–orbit coupling, which can help develop superconducting spintronic materials.
-
Hidden Magnetoelectric Phase Transition by Emergent Staggered Magnetic Field
Magnetic properties in condensed matter
2023-2-17
Emergent staggered magnetic fields induce phase transition in the multiferroic material Ba2FeSi2O7.
This study established a design principle utilizing emergent staggered magnetic fields to obtain an enhanced physical response. -
Angle-Resolved Photoelectron Spectroscopy Microscopy: A Tool to Accelerate Nanomaterials Research
Electronic structure and electrical properties of surfaces and nanostructures
Structure and mechanical and thermal properties in condensed matter
Cross-disciplinary physics and related areas of science and technology
2023-2-10
Researchers have published a practical guide on new uses of photoelectron microscopy combined with valence band dispersion analysis. They visualized several-micrometers-wide graphite facets and precisely characterized the band structure.