Understanding Skyrmion Crystal Formation in EuPtSi
© The Physical Society of Japan
This article is on
Field-Direction Sensitive Skyrmion Crystals in Cubic Chiral Systems: Implication to 4f-Electron Compound EuPtSi
(JPSJ Editors' Choice)
J. Phys. Soc. Jpn. 90, 073705 (2021).
We theoretically demonstrate that the interplay between the spin-charge and spin-orbit couplings in itinerant magnets stabilizes field-direction sensitive, short-period skyrmions. Our results can aid in engineering short-period skyrmions.

Magnetic skyrmions with swirling topological spin textures are of significant interest owing to their peculiar magnetic, transport, and optical properties. In magnetic materials, skyrmions usually appear in a periodically ordered state, which is referred to as the skyrmion crystal (SkX). The SkX can be considered as a multiple-q order described by the superposition of multiple spiral waves. The SkX was originally discovered in 2009 in d-electron compounds like MnSi, where the Dzyaloshinskii–Moriya interaction plays an important role. Recently, SkXs have been observed in centrosymmetric magnets via other mechanisms, such as frustrated exchange interactions and/or multiple-spin interactions in itinerant magnets. The resulting difference due to the individual origins appears in the magnetic modulation period of the SkXs, with the original mechanism usually leading to much longer magnetic periods than those of the latter ones. Specifically, a small skyrmion induces a large emergent magnetic field, and hence engineering small skyrmions is relevant for future spintronics applications, as they may potentially aid in realizing energy-efficient devices based on high density topological objects.
The itinerant chiral antiferromagnet EuPtSi is the first f-electron compound with a noncentrosymmetric lattice structure found to host a SkX with a small magnetic period. The origin of the SkX in EuPtSi is not explained by the conventional mechanism based on the Dzyaloshinskii–Moriya interaction, as the magnetic periods and the magnetic-field-direction dependencies of the SkXs are different from those found in other noncentrosymmetric magnets. Therefore, we need to consider other mechanisms that have not yet been theoretically clarified. Understanding the origin of short-period SkXs in noncentrosymmetric itinerant magnets found in EuPtSi is crucial in enabling small skyrmion engineering for practical applications.
In this study, we theoretically investigated the origin of SkXs in f-electron compounds by constructing a new model based on EuPtSi. We discovered the following two important elements in inducing a field-direction sensitive SkX with a small magnetic period: (1) the multiple-q superpositions of the spirals with low-symmetric ordering vectors and (2) the synergy between the long-range Dzyaloshinskii–Moriya interaction arising from the spin-orbit coupling and the biquadratic interaction arising from the spin-charge coupling in itinerant magnets. We demonstrated that the theoretical model which satisfies the two conditions accurately describes the SkX physics in EuPtSi through unbiased annealing simulations. Our study provides a reference for both engineering short-period SkXs and for exploring further skyrmion-hosting materials in noncentrosymmetric itinerant magnets.
(Written by Satoru Hayami on behalf of all authors.)
Field-Direction Sensitive Skyrmion Crystals in Cubic Chiral Systems: Implication to 4f-Electron Compound EuPtSi
(JPSJ Editors' Choice)
J. Phys. Soc. Jpn. 90, 073705 (2021).
Share this topic
Fields
Related Articles
-
Origin of Metamagnetic Transition (MMT) in the Spin-Triplet Superconductivity in UTe2
Superconductivity
Magnetic properties in condensed matter
2022-7-4
State-of-the-art magnetostriction measurements in a pulsed-magnetic field reveal the origin of a metamagnetic transition of spin-triplet superconductor UTe2. We propose that the uranium valence fluctuation plays a crucial role in its metamagnetic and superconducting transitions.
-
Unraveling the Unique Properties of Icosahedral Quasicrystals
Magnetic properties in condensed matter
Structure and mechanical and thermal properties in condensed matter
Cross-disciplinary physics and related areas of science and technology
2022-6-28
Scientists review the magnetism, non-Fermi liquid behavior, and quantum critical behavior observed in icosahedral quasicrystals (QCs), and compare these properties with that of heavy fermions and approximant crystals.
-
Tensor Networks Across Physics
Mathematical methods, classical and quantum physics, relativity, gravitation, numerical simulation, computational modeling
Statistical physics and thermodynamics
Magnetic properties in condensed matter
2022-6-7
Researchers from Japan provide the first comprehensive review of the historical development of tensor networks from a statistical mechanics viewpoint, with a focus on its theoretical background.
-
Realizing Spin Liquids Experimentally with Kapellasite-type Quantum Kagome Antiferromagnet
Magnetic properties in condensed matter
2022-2-10
This study reports the observation of the spin fluctuation in a quantum kagome antiferromagnet CaCu3(OH)6Cl2·0.6H2O which persists down to 82 mK using the μSR technique.
-
Shedding Light on Nonreciprocal Directional Dichroism at High Magnetic Fields in a Multiferroic Material
Dielectric, optical, and other properties in condensed matter
Magnetic properties in condensed matter
2022-1-19
Large optical nonreciprocal directional dichroism, coupled with an antiferromagnetic order parameter, is observed in a high magnetic field via magneto-optical spectroscopy combined with a pulse magnet technique.