Uncovering the Superlattice Structure of Calcium Iridium Oxide at Phase Transition
© The Physical Society of Japan
This article is on
First Observation of Superlattice Reflections in the Hidden Order at 105 K of Spin-Orbit Coupled Iridium Oxide Ca5Ir3O12
(JPSJ Editors' Choice)
J. Phys. Soc. Jpn. 90, 063702 (2021).
Order parameter of non-magnetic phase transition at 105 K, which is called "hidden order", was revealed in spin-orbit coupled iridate Ca5Ir3O12. This discover of order parameter with rotational and directional degrees of freedom in atomic scale will lead to development of energy saving devices with a fast cross-correlated response.
First Observation of Superlattice Reflections in the Hidden Order at 105 K of Spin-Orbit Coupled Iridium Oxide Ca5Ir3O12
(JPSJ Editors' Choice)
J. Phys. Soc. Jpn. 90, 063702 (2021).
Share this topic
Fields
Related Articles
-
Unraveling the Unique Properties of Icosahedral Quasicrystals
Magnetic properties in condensed matter
Structure and mechanical and thermal properties in condensed matter
Cross-disciplinary physics and related areas of science and technology
2022-6-28
Scientists review the magnetism, non-Fermi liquid behavior, and quantum critical behavior observed in icosahedral quasicrystals (QCs), and compare these properties with that of heavy fermions and approximant crystals.
-
Understanding Relaxor Ferroelectrics with Simple Landau Theory
Dielectric, optical, and other properties in condensed matter
Structure and mechanical and thermal properties in condensed matter
Cross-disciplinary physics and related areas of science and technology
2022-5-23
Third-order nonlinear dielectric susceptibility is measured in the paraelectric phase of Pb(Sc1/2Ta1/2)O3. The linear and nonlinear dielectric susceptibility results can be consistently explained based on the Landau-type free-energy density.
-
Four-Dimensional XY Quantum Phase Transition in Superfluid Helium-4
Structure and mechanical and thermal properties in condensed matter
2022-3-18
Liquid helium confined in nanopores exhibits a quantum superfluid transition at absolute zero. Investigations have revealed that the quantum nature also dominates the finite-temperature superfluid transition, obeying a simple mean-field theory.
-
Phosphorous-Based Zintl Compounds as Viable Semimetals
Electronic structure and electrical properties of surfaces and nanostructures
Structure and mechanical and thermal properties in condensed matter
Electron states in condensed matter
2022-2-4
A black-phosphorus-derived Zintl compound, MoP4, is obtained by high-pressure synthesis. The material exhibits a non-quadratic large magnetoresistance and semi-metallic Seebeck behavior, as predicted by the first principles calculations yielding massive and non-symmorphic Dirac semimetal states.
-
Exploring the Basic Principles and Functionalities of Spintronic Thermal Management
Magnetic properties in condensed matter
Structure and mechanical and thermal properties in condensed matter
2021-12-13
Scientists propose a new spin caloritronics concept called “spintronic thermal management” and provide a comprehensive overview of basic principles, physical behaviors, and heat control functionalities associated with the concept.