Uncovering the Superlattice Structure of Calcium Iridium Oxide at Phase Transition
© The Physical Society of Japan
This article is on
First Observation of Superlattice Reflections in the Hidden Order at 105 K of Spin-Orbit Coupled Iridium Oxide Ca5Ir3O12
(JPSJ Editors' Choice)
J. Phys. Soc. Jpn. 90, 063702 (2021).
Order parameter of non-magnetic phase transition at 105 K, which is called "hidden order", was revealed in spin-orbit coupled iridate Ca5Ir3O12. This discover of order parameter with rotational and directional degrees of freedom in atomic scale will lead to development of energy saving devices with a fast cross-correlated response.
First Observation of Superlattice Reflections in the Hidden Order at 105 K of Spin-Orbit Coupled Iridium Oxide Ca5Ir3O12
(JPSJ Editors' Choice)
J. Phys. Soc. Jpn. 90, 063702 (2021).
Share this topic
Fields
Related Articles
-
Pressure-Tuned Classical–Quantum Crossover in Magnetic Field-Induced Quantum Phase Transitions of a Triangular-Lattice Antiferromagnet
Magnetic properties in condensed matter
Electron states in condensed matter
Cross-disciplinary physics and related areas of science and technology
2024-9-5
The correspondence principle states that as quantum numbers approach infinity, the nature of a system described by quantum mechanics should match that described by classical mechanics. Quantum phenomena, such as quantum superposition and quantum correlation, generally become unobservable when a system approaches this regime. Conversely, as quantum numbers decrease, classical descriptions give way to observable quantum effects. The external approach to classical–quantum crossover has attracted research interest. This study aims to demonstrate a method for achieving such control in materials.
-
d2 Trimer and d3 Tetramer in a Pyrochlore Lattice
Dielectric, optical, and other properties in condensed matter
Electron states in condensed matter
2024-7-11
Based on the charge disproportionation of V3+ and V2+, the V3+(d2) trimers and V2+(d3) tetramers in the vanadium pyrochlore lattice of AlV2O4 are described by the orbitally-induced Peierls mechanism.
-
Evaluation of the Exchange Stiffness Constants of Itinerant Magnets from the First-Principles Calculations
Electron states in condensed matter
Structure and mechanical and thermal properties in condensed matter
2024-6-5
Using first-principles calculations, we evaluated the exchange stiffness constants of ferromagnetic metals at finite temperatures. The constants can be used as parameters in the Landau–Lifshitz–Gilbert equation.
-
Which is Moving?—Pinning Down the Origin of Fluctuations in Muon Spin Relaxation—
Structure and mechanical and thermal properties in condensed matter
Cross-disciplinary physics and related areas of science and technology
2024-3-28
The study demonstrated that we can distinguish between the diffusion motion of the muon itself and the motion of the surrounding ions in muon spin relaxation.
-
Variety of Mechanically Induced Spin Currents in Rashba Systems
Electronic transport in condensed matter
Magnetic properties in condensed matter
Structure and mechanical and thermal properties in condensed matter
2024-3-22
Various types of spin currents, including unconventional types, are generated in Rashba spin-orbit coupled systems by dynamic lattice distortions associated with, for example, surface acoustic waves.